Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Sevil Irișli* and Ayten Şen

University of Ege, Faculty of Science, Department of Chemistry, 35100, Izmir, Turkey

Correspondence e-mail: irislisevil@hotmail.com

Key indicators

Single-crystal X-ray study
$T=297 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.010 \AA$
R factor $=0.055$
$w R$ factor $=0.101$
Data-to-parameter ratio $=17.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
[Bis(diphenylphosphino)amine- $\left.\kappa^{2} P, P^{\prime}\right][1,3-b i s(d i-$ phenylphosphino)propane $\left.-\kappa^{2} P, P^{\prime}\right]$ platinum(II) dichloride dichloromethane solvate

The title complex, $\left[\mathrm{Pt}\left(\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{NP}_{2}\right)\left(\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{P}_{2}\right)\right] \mathrm{Cl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ or $[\mathrm{Pt}(\mathrm{dppa})(\mathrm{dppp})] \mathrm{Cl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$, where dppa is bis(diphenylphosphino) amine and dppp is 1,3 -bis(diphenylphosphino)propane, has two different chelate rings. The $\mathrm{Pt}^{\mathrm{II}}$ atom has a distorted square-planar geometry. The six-membered chelate ring of dppp has a chair conformation. There is a hydrogen bond between the dppa $\mathrm{N}-\mathrm{H}$ group and a Cl^{-}counter-ion.

Comment

Diphosphinoamine ligands have proved very versatile, because substituents on both P and N atoms can be varied, introducing changes in the $\mathrm{P}-\mathrm{N}-\mathrm{P}$ bond angle and the conformation around the phosphorus centres (Balakrishna et al., 1994). Diphosphinoamines can bind to metals in several modes, namely monodentate, bidentate, chelating and bridging. Bis(diphenylphosphino)amine (dppa) has generated much interest since its discovery. One or two phosphorus atoms of dppa can be readily oxidized by oxygen, sulfide and selenium, to give $\left[\mathrm{Ph}_{2} \mathrm{P}(E) \mathrm{NHP}\left(E^{\prime}\right) \mathrm{Ph}_{2}\right]$ and $\left[\mathrm{Ph}_{2} \mathrm{P}(E)\right.$ NHPPh_{2}] (E or $E^{\prime}=\mathrm{O}, \mathrm{S}$ and Se). Several metal complexes of dppa and these derivatives have been prepared (Uson et al., 1989; Browning et al., 1998; Smith et al., 1996). All of these ligands are readily deprotonated to give $\left[\mathrm{Ph}_{2} \mathrm{PNPPh}_{2}\right]^{-}$, $\left[\mathrm{Ph}_{2} \mathrm{P}(E) \mathrm{NP}\left(E^{\prime}\right) \mathrm{Ph}_{2}\right]^{-}$and $\left[\mathrm{Ph}_{2} \mathrm{P}(E) \mathrm{NPPh}_{2}\right]^{-}$ligands which coordinate with the metals to give chelate compounds. The chemistry of these imidodiphosphinate anions have been reported extensively (Balazs et al., 1999; Slawin et al., 1994; Novasad et al., 1999). They are widely used in catalysis, metal extraction and bioinorganic chemistry (Ly \& Woollins, 1998). There are only a limited number of studies in the literature related to the mixed bis(chelate) complexes which contain dppa and diphosphine ligands (Balakrishna et al., 1994; Bhattacharyya et al., 1993).

We describe here the preparation and characterization of a new ionic mixed platinum complex which has dppa and 1,3bis(diphenylphosphino)propane (dppp) chelating ligands. The reaction of PtCl_{2} (dppp) with dppa (molar ratio 1:1) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ yielded $[\mathrm{Pt}(\mathrm{dppa})(\mathrm{dppp})] \mathrm{Cl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$, (I). A perspective view

Received 17 August 2005 Accepted 20 September 2005 Online 28 September 2005

A perspective view of complex (I). Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.
of complex (I) is shown in Fig. 1. Selected bond distances and angles are listed in Table 1.

In complex (I), the dppa ligand is coordinated to Pt in a bidentate manner. The Pt is coordinated by four P atoms of dppp and dppa ligands in a distorted square-planar arrangement with trans $\mathrm{P} 1-\mathrm{Pt} 1-\mathrm{P} 3$ [161.70 (6) ${ }^{\circ}$] and $\mathrm{P} 2-\mathrm{Pt} 1-\mathrm{P} 4$ [167.56 (6) ${ }^{\circ}$] angles. Within the dppa chelate ring the $\mathrm{Pt}-\mathrm{P}$ distances are slightly different from each other [$\mathrm{Pt} 1-\mathrm{P} 3$, 2.3161 (15) \AA and $\mathrm{Pt} 1-\mathrm{P} 4,2.3431$ (15) \AA]. These values are longer than those of the relatively strain-free five-membered chelate of $\mathrm{PtCl}_{2}\left[\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et}) \mathrm{P}(\mathrm{S}) \mathrm{Ph}_{2}\right][2.197$ (2) \AA; Balakrishna et al., 1993]. The $\mathrm{Pt}-\mathrm{P}$ bond lengths of dppp are $\mathrm{Pt} 1-\mathrm{P} 1=$ 2.3421 (16) \AA and $\mathrm{Pt} 1-\mathrm{P} 2=2.3288$ (16) \AA. These values are consistent with the literature (Güneş et al., 2001).

The considerable strain in the $\mathrm{PtP}_{2} \mathrm{~N}$ ring of (I) is also reflected in the $\mathrm{P} 3-\mathrm{Pt} 1-\mathrm{P} 4$ bond angle of $69.10(5)^{\circ}$. This value is consistent with those of chelate complexes $\left[\mathrm{Cu}(\mathrm{CN})(\mathrm{dppa}) \mathrm{PPh}_{3}\right] \cdot \mathrm{CH}_{3} \mathrm{OH}$ [71.4 (1) ${ }^{\circ}$; Ellermann et al., 1992] and $\mathrm{Cp}[\mathrm{Ru}(\mathrm{dppa}) \mathrm{Cl}]$ [69.12 (3) ${ }^{\circ}$; Geicke et al., 1998]. The P3-N1-P4 bond angle [104.8 (3) ${ }^{\circ}$] is smaller than the angle in free bis(phosphino)amine ligands, which have a trigonal environment (Bhattacharyya et al., 1996; Rösler et al., 1998). The four-membered chelate ring of the complex (I) deviates from planarity with the torsion angles of $\mathrm{N} 1-\mathrm{P} 4-$ $\mathrm{Pt} 1-\mathrm{P} 3=7.42(19)^{\circ}$; $\mathrm{N} 1-\mathrm{P} 3-\mathrm{Pt} 1-\mathrm{P} 4=-7.42(19)^{\circ}$. This result supports the large upfield shift of dppa on complexation $[\delta(\mathrm{P})=7.5$ p.p.m. for complex $(\mathrm{I}), \delta(\mathrm{P})=42.9$ p.p.m. for free dppa]. The $\mathrm{P}-\mathrm{N}$ bond length [1.668 (5) \AA] reflects the partial double-character of this bond.

The resulting six-membered $\mathrm{Pt} 1 / \mathrm{P} 1 / \mathrm{P} 2 / \mathrm{C} 13-\mathrm{C} 15$ ring in complex (I) has a chair conformation, with $\mathrm{Pt} 1-\mathrm{P} 1-\mathrm{C} 13-$ C 14 and $\mathrm{Pt} 1-\mathrm{P} 2-\mathrm{C} 15-\mathrm{C} 14$ torsion angles of $-52.8(5)^{\circ}$ and $62.1(5)^{\circ}$, respectively.

Intermolecular hydrogen-bonding interactions (dashed lines) of complex (I).

The crystal structure of this complex includes one molecule of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ per complex molecule. The N -bound H atom in the dppa ligand is hydrogen bonded $[2.33$ (7) \AA A to the Cl 1 ion. This same chloride ion is situated $2.81 \AA$ from the H atom of the solvent molecule. There are other inter- and intramolecular interactions, summarized in Table 2 and shown in Fig. 2. The other Cl^{-}ion (Cl 2) interacts with Pt 1 at a distance of 3.3134 (2) \AA in a direction approximately perpendicular to the coordination plane.

Experimental

The reaction was carried out under an argon atmosphere by use of Schlenk techniques. All solvents were dried prior to use. A solution of dppa ($0.12 \mathrm{~g}, 0.30 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml})$ was added to a solution of $\mathrm{PtCl}_{2} \mathrm{dppp}(0.20 \mathrm{~g}, 0.30 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml})$ and stirred for 24 h at room temperature. The solution was concentrated and then $\mathrm{Et}_{2} \mathrm{O}$ was added. Cooling of the solution to 273 K gave a colourless microcrystalline product. The product was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}$. Yield 58%, m.p. $533-537 \mathrm{~K}$. Analysis found: C $55.10, \mathrm{H}$ 4.32, P 12.47%; calculated for $\mathrm{C}_{52} \mathrm{H}_{49} \mathrm{Cl}_{4} \mathrm{NP}_{4} \mathrm{Pt}: \mathrm{C} 54.32$, H 4.27, P 10.79%. IR: $3215(\nu \mathrm{~N}-\mathrm{H}), 886(\mathrm{NP}-\mathrm{N}) \mathrm{cm}^{-1} ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, p.p.m.): $\delta-13.6\left[{ }^{1} J(\mathrm{Pt}-\mathrm{P})=2441 \mathrm{~Hz}(\mathrm{dppp})\right], 7.5\left[{ }^{1} J(\mathrm{Pt}-\mathrm{P})=\right.$ 2137 Hz (dppa)].

Crystal data

[^1]$D_{x}=1.572 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3963 reflections
$\theta=2.2-19.7^{\circ}$
$\mu=3.28 \mathrm{~mm}^{-1}$
$T=297$ (2) K
Block, colourless
$0.16 \times 0.16 \times 0.08 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker 2001)
$T_{\text {min }}=0.622, T_{\text {max }}=0.779$
38986 measured reflections

Refinement

Refinement on F^{2}
9916 independent reflections 8258 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.074$
$\theta_{\text {max }}=26.4^{\circ}$
$h=-15 \rightarrow 15$
$k=-27 \rightarrow 27$
$l=-22 \rightarrow 22$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.055$

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0273 P)^{2}\right.
$$

$$
+2.9082 P]
$$

where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.015$
$\Delta \rho_{\text {max }}=1.33 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-1.76 \mathrm{e}_{\AA^{-3}}$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

$\mathrm{N} 1-\mathrm{P} 3$	$1.668(5)$	$\mathrm{P} 2-\mathrm{Pt} 1$	$2.3288(16)$
$\mathrm{N} 1-\mathrm{P} 4$	$1.668(5)$	$\mathrm{P} 3-\mathrm{Pt} 1$	$2.3161(15)$
$\mathrm{P} 1-\mathrm{Pt} 1$	$2.3421(16)$	$\mathrm{P} 4-\mathrm{Pt} 1$	$2.3431(15)$
$\mathrm{P} 3-\mathrm{N} 1-\mathrm{P} 4$	$104.8(3)$	$\mathrm{P} 3-\mathrm{Pt} 1-\mathrm{P} 4$	$69.10(5)$
$\mathrm{P} 3-\mathrm{Pt} 1-\mathrm{P} 2$	$98.48(6)$	$\mathrm{P} 2-\mathrm{Pt} 1-\mathrm{P} 4$	$167.56(6)$
$\mathrm{P} 3-\mathrm{Pt} 1-\mathrm{P} 1$	$161.70(6)$	$\mathrm{P} 1-\mathrm{Pt} 1-\mathrm{P} 4$	$102.83(6)$
$\mathrm{P} 2-\mathrm{Pt} 1-\mathrm{P} 1$	$88.78(6)$		
$\mathrm{C} 14-\mathrm{C} 13-\mathrm{P} 1-\mathrm{Pt} 1$	$-52.8(5)$	$\mathrm{N} 1-\mathrm{P} 3-\mathrm{Pt} 1-\mathrm{P} 4$	$-7.42(19)$
$\mathrm{C} 14-\mathrm{C} 15-\mathrm{P} 2-\mathrm{Pt} 1$	$62.1(5)$	$\mathrm{N} 1-\mathrm{P} 4-\mathrm{Pt} 1-\mathrm{P} 3$	$7.42(19)$

Table 2
Hydrogen-bond geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{Cl} 1^{\mathrm{i}}$	$0.79(7)$	$2.33(7)$	$3.101(5)$	$167(7)$
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{Cl} 2$	0.93	2.77	$3.601(6)$	149
$\mathrm{C} 15-\mathrm{H} 15 B \cdots \mathrm{Cl} 2$	0.97	2.76	$3.497(7)$	133
$\mathrm{C} 41-\mathrm{H} 41 \cdots \mathrm{~N} 1$	0.93	2.62	$3.064(9)$	110
$\mathrm{C} 42-\mathrm{H} 42 \cdots \mathrm{Cl} 1^{\mathrm{ii}}$	0.93	2.78	$3.62(9)$	151
$\mathrm{C} 51-\mathrm{H} 51 \cdots \mathrm{Cl} 2^{\mathrm{C}} \mathrm{C}^{\mathrm{iii}}$	0.93	2.59	$3.520(6)$	175
$\mathrm{C}^{-\mathrm{H} 52 A \cdots \mathrm{Cl}}{ }^{2}$	0.97	2.81	$3.763(10)$	169

[^2]The maximum and minimum residual densities are located $0.89 \AA$ from atom Pt1 and $1.04 \AA$ from P4, respectively.. The H atoms were positioned geometrically and refined with a riding model, with $\mathrm{C}-$ $\mathrm{H}=0.93-0.97 \AA$ and with $U_{\text {iso }}$ constrained to $1.2 U_{\text {eq }}(\mathrm{C})$. The hydrogen atom bonded to N 1 was freely refined.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL.

We thank the University of Babeş Bolyai for their X-ray crystallography support, and the Research Foundation of Ege University for funding (2002 FEN 011).

References

Balakrishna, M. S., Klein, R., Uhlenbrock, S., Pinkerton, A. \& Cavell, R. G. (1993). Inorg. Chem. 32, 5676-5681.

Balakrishna, M. S., Reddy, V. S. \& Krishnamurthy, S. S. (1994). Coord. Chem. Rev. 129, 1-90.
Balazs, G., Drake, J. E., Silvestru, C. \& Haiduct, I. (1999). Inorg. Chim. Acta, 278, 61-71.
Bhattacharyya, P., Sheppard, R. N., Slawin, A. M. Z., Williams, D. J. \& Woolins, J. D. (1993). J. Chem. Soc. Dalton Trans. 15, 2393-2400.

Bhattacharyya, P., Slawin, A. M. Z., Smith, M. B. \& Woolins, J. D. (1996). Inorg. Chem. 35, 3675- 3682.
Browning, C. S., Burrow, R. A., Farrar, D. H. \& Mirza, H. A. (1998). Inorg. Chim. Acta, 271, 112-118.
Bruker (2001). SAINT (Version 6.26a), SMART (Version 5.625), SADABS and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.
Ellermann, J., Knoch, F. A., Maier, K. J. \& Moll, M. (1992). J. Organomet. Chem. 428, C44-C51.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Geicke, J., Lorenz, I. P., Engel, M. \& Polborn, K. (1998). Inorg. Chim. Acta, 269, 157-161.
Güneş, B., Nergiz, E., İde, S., Şahin, E. \& İrişli, S. (2001). Acta Cryst. C57, 1282-1284.
Ly, T. Q. \& Woollins, J. D. (1998). Coord. Chem. Rev. 176, 451-481.
Novasad, J., Necas, M., Marek, J., Veltsistas, P., Papadimitriou, C., Haiduc, I., Watanabe, M. \& Woollins, J. D. (1999). Inorg. Chim. Acta, 290, 256-260.
Rösler, R., Stanciu, M., Yang, J., Drake, J. E., Silvestru, C. \& Haiduc, I. (1998). Phosphorus Sulfur Silicon, 132, 231-250.
Slawin, A. M. Z., Ward, J., Williams, D. J. \& Woollins, D. (1994). J. Chem. Soc. Chem. Commun. pp. 421-422.
Smith, M. B., Slawin, A. M. Z. \& Woollins, J. D. (1996). Polyhedron, 15, 15791583.

Uson, R., Fornies, J., Navarro, R., Tomas, M., Fortuno, C. \& Cebollada, J. I. (1989). Polyhedron, 8, 1045-1052.

[^0]: (C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

[^1]: $\left[\mathrm{Pt}\left(\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{NP}_{2}\right)\left(\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{P}_{2}\right)\right] \mathrm{Cl}_{2}--$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
 $M_{r}=1148.69$
 Monoclinic, $P 2_{1} / n$
 $a=12.2069$ (11) £
 $b=22.302$ (2) A
 $c=17.8300$ (16) \AA
 $\beta=91.049$ (2) ${ }^{\circ}$
 $V=4853.3$ (8) \AA^{3}
 $Z=4$

[^2]: Symmetry codes: (i) $x, y-1, z$; (ii) $-x+1,-y+1,-z$; (iii) $-x+1,-y+1,-z+1$.

